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Memory effects from Prof. Stephanov

• Thanks for your supervising, collaboration and conversation.

• Such memory will never be washed 
out. 



Motivations

• Why cumulants: cumulants, in particular non-Gaussian cumulants are 
important observables for search for QCD critical point.  	

	



• Why real time evolution: fireball only spends a finite time in critical regime, 
soft-mode in responsible for critical fluctuations is not in equilibrium with the 
medium. 

 	

	



• Why evolution of the skewness and 
kurtosis: the sign of them are 
indefinite . Even a qual i tat ive 
understanding of their beam energy  
dependence requ i res t ak ing 
memory effects into consideration.  



This talk

• Purpose: understand how memory effects would affect the evolution of 
cumulants, in particular the non-Gaussian ones. Understand the 
implication of such memory effects for detecting QCD critical point. 

 	

	



• We will restrict ourselves to the cross-over side of the critical regime but will 
take universal non equilibrium dynamics into account.

• We will focus on the evolution of cumulants(the mean, variance, skewness 
and kurtosis) of sigma-field in critical regime. 



Outline

• Part I:  The evolution equations for cumulants. 

 	

	



• Part III: Implications on search for QCD critical point. 

• Part II: Evolution of cumulants in QCD critical regime. 



Part I: The evolution equations for 
cumulants. 



Moments(cumulants) of �-field

We consider zero moment mode of order parameter field �-field:
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Fluctuations in Equilibrium in 3d Ising Model universality

class
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It is convenient to rescale the quantity by the width of the equilibrium distribu-
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The evolution of non-equilibrium P(�; ⌧)

Fokker-Planck equation descrbies the relaxation of non-equilibrium
distribution P(�, ⌧) towards the equilibrium distribution(Hohenberg-
Halperin, 1977),
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The information on the evolution of all cumulants are encoded
in Fokker-Planck equation. However, it not easy to gain in-
tuition on how non-Gaussian cumulants evolves by solving it
numerically.

Can one find a a set of equation which directly describe the
evolution of cumulants we are interested in(�̄,
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A set of equation of cumulants evolution

We derive, to leading order in ✏ =
p
⇠3/V (⇠ is larger than microscopic scale

but smaller than the size of the system), a set of equation from Fokker-Planck
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Fn(�̄), n = 1, 2, 3, 4 are polynomials of �̄ and only depends on the equilibrium
properties of the system.

Derivation is straightforward by substituting �n into Fokker-Planck equation and
integrate over �.
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The Gaussian limit

If the equilibrium distribtuion is Gaussian: ⌦̃
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Simple relaxation equaiton, any non-Gaussian cumulants will be damped.

If one defines non-equilibrium correlation length ⇠(⌧) ⌘ p
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Near equilibrium limit
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Coupled evolution. Lower moments will be relaxed back to the
equilibrium first.
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Summary of Part I:

• We have derived a set of equations for the evolution of cumulants.

• We now apply it to the QCD critical regime.

• The evolution of non-Gaussian cumulants are coupled to the Gaussian 
cumulant and the mean.



Phenomenological inputs

We will apply our equations to study the evolution of cumulants in QCD critical
regime. We therefore need phenomenological inputs.
We define the scaling regime with the criterion: ⇠min < ⇠eq < ⇠

max

and to be
specific, we will take ⇠

max

/⇠
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= 3 below.
The equilibrium distribution is known in Ising variables r , h. We need to map
them to QCD variables T , µB .(Non-universal, major uncertainty). We use linear
mapping with �T ,�µ the width of critical regime in QCD phase diagram.
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and we use Model H, z = 3.
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Trajectory

We will assume for each trajectory, the µB of the fireball is constant. It would
then be corresponding to a vertical line in the critical regime due to our mapping
relation.
Along each trajectory, we parametrize the evolution of volume and temperature
by expansion rate nV = 3 and speed of sound c

2

s :
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where VI ,TI are volume and temperature of the system at ⌧I , the time when
the trajectory hits the boundary of critical regime.
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Part II:  Evolution of cumulants in 
QCD critical regime. 



The evolutions

• We label the trajectory crossing the critical regime by the 
corresponding temperature and will present the non-equilibrium 
value with different choices of relaxation time. 

• We have solved evolution equations along trajectories passing 
through the critical regime. 

• We rescale our results by the corresponding equilibrium value at 
point A. 

• Only one free parameter:



Evolution of magnetization 

• As expected, the slowing down is most visible around Tc 
where the equilibrium correlation becomes large. 

•       tend to approach its equilibrium value but still fall behind 	





Evolution of Gaussian moment

Berdnikov-Rajagopal, 2000

• Similar to previous results.

• The effects of critical slowing down would delay the growth of non-
equilibrium length. 	



• On the other hand, memory effect also protects the memory of the 
system in critical regime from being completely washed out. 

Evolution of variance along a representative trajectory



Skewness and Kurtosis

• The evolution of higher cumulants might not follow the equilibrium 
moments (low moments will affect the evolution of the higher one).

• Evolution of higher cumulants has a richer pattern(the evolution 
equations are coupled.)

• Depending on the temperature at which you take the snapshot, the 
non-equilibrium value can be substantially different(including sign) 
from the equilibrium one. 

Evolution of skewness and kurtosis along a representative trajectory



Quick Synopsis

• Gaussian cumulants approach equilibrium 
first, then higher cumulants.

• The tails of evolutions for different 
relaxation times exhibit possible self-
similarity behavior(finite time scaling?).  

• Memory effects are important.



Part III: Implications of results for 
the search for QCD critical point



Mimicking Beam Energy Scan

• We now examine the memory effects on BES scan. 

• To mimic the beam energy scan, we also solved the evolution 
equations for all constant      trajectories. We therefore obtain non-
equilibrium at each point in the critical regime. 

• We will concentrate on the Skewness and Kurtosis and will start 
with their most prominent feature: sign. 



(Sign of)Equilibrium Skewness and Kurtosis

• Following the argument by Stephanov(Phys.Rev.Lett. 102 (2009) 
032301), we assume the sign of skewness is positive below cross-
over line. 

Skewness Kurtosis

Red >0

Blue<0

• How would non-equilibrium effects change the above picture?



Deformation effects: Skewness

• Non-equilibrium effects deforms the regime that skewness is 
positive(negative).

• Non-equilibrium skewness carries the memory from deconfined 
phase(negative sign).

⌧rel/⌧I = 0.02

Non-equilibrium skewness in critical regime



Deformation effects: Kurtosis

• Similar for kurtosis. The boundary that kurtosis will change sign also 
deform.

Non-equilibrium kurtosis in critical regime



Skewness and Kurtosis on freeze-out 
curves

• Disclaimer: This is neither a prediction nor a fitting. The purpose is 
to illustrate memory effects. 

• We now present non-equilibrium 
results on the freeze-out curves. 

• The relative position between the 
freeze-out curves and critical regime 
depends on the location of critical as 
well as the width of the critical regime. 



Skewness on freeze-out curves

• Negative contribution to skewness: 
memory effects? 

• The sign of non-equilibrium skewness can 
be opposite to the equilibrium skewness.

• The behavior of non-equilibrium skewness can 
be non-monotonous even if the equilibrium 
skewness is monotonous.

Skewness on f. curves for 
three different positions 
of f.curves. 



Non-equilibrium Kurtosis(of sigma field) on 
freeze-out curves

• The flipping of sign of kurtosis is still 
robust!

• The location that the sign changes depends 
on non-equilibrium effects. 

Kurtosis on f. curves 
for three different 
positions of f.curves. 

• The trends in data can be captured by tuning 
relaxation time and the relative position of 
freeze-out curve. 



Summary I
• We have developed a set of equations to describe the evolution of 

cumulants in heavy-ion collisions.

• We illustrate possible complications the would occur in a more 
comprehensive simulation(mapping between Ising model and QCD, 
relative position of freeze-out curve, relaxation time etc )

• Regarding the data: keeping non-
equilibrium effects in mind are 
important(such as deformation 
of the boundary that sign of 
higher cumulants will change). 



Summary II

• The parameter space might be 
constra ined by cons ider ing 
correlations among cumulants, 
finite time scaling among different 
centrality bins.

• Possibility to reveal dynamical critical properties of QCD in critical 
regime(similar story at RHIC top energy, not just thermodynamic, 
also hydrodynamics.)

• Even in this simple model, results 
are sensitive to the choice of 
parameters(re laxat ion t ime , 
relative position of freeze-out 
curves).
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